365 research outputs found

    SMOS L1C and L2 Validation in Australia

    Get PDF
    Extensive airborne field campaigns (Australian Airborne Cal/val Experiments for SMOS - AACES) were undertaken during the 2010 summer and winter seasons of the southern hemisphere. The purpose of those campaigns was the validation of the Level 1c (brightness temperature) and Level 2 (soil moisture) products of the ESA-led Soil Moisture and Ocean Salinity (SMOS) mission. As SMOS is the first satellite to globally map L-band (1.4GHz) emissions from the Earth?s surface, and the first 2-dimensional interferometric microwave radiometer used for Earth observation, large scale and long-term validation campaigns have been conducted world-wide, of which AACES is the most extensive. AACES combined large scale medium-resolution airborne L-band and spectral observations, along with high-resolution in-situ measurements of soil moisture across a 50,000km2 area of the Murrumbidgee River catchment, located in south-eastern Australia. This paper presents a qualitative assessment of the SMOS brightness temperature and soil moisture products

    Grid-Connected Voltage Source Converters with integrated Multilevel-Based Active Filters

    Get PDF
    Low- and medium voltage power converters for grid applications require bulky and expensive LCL-filters in order to meet the harmonic limits defined by the grid code. This paper presents a novel hybrid converter topology with smaller passive components, composed of a high power main converter with an integrated low power active filter. The presented coupled control strategies for a current-source and a voltage-source topology enable the immediate mitigation of the switching frequency current ripple, significantly decreasing the total harmonic distortion (THD) of the output current to below 5 % and thereby eliminating the need for a passive LCL-filter. Compared to LCL-filter based converter systems, a reduction of the inductive component expenditure of up to 50 % is achievable even for a very low active filter to main converter power rating ratio of 10 %. The outstanding harmonic performance and reduced passive component demand of the hybrid converter allow increased power density and efficiency as well as lower costs of low- and medium voltage power converters

    Predicting the extent of wildfires using remotely sensed soil moisture and temperature trends

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Recent climate trends evidence a rise of temperatures and an increase in the duration and intensity of droughts which is in turn leading to the occurrence of larger wildfires, which threaten the environment as well as human lives and beings. In this context, improved wildfires prediction tools are urgently needed. In this paper, the use of remotely sensed soil moisture data as a key variable in the climate-wildfires relationship is explored. The study is centered in the fires registered in the Iberian Peninsula during the period 2010-2014. Their prior-to-occurrence surface moisture-temperature conditions were analyzed using SMOS-derived soil moisture data and ERA-Interim land surface temperature reanalysis. Results showed that moisture and temperature conditions limited the extent of wildfires, and a potential maximum burned area per moisture-temperature paired values was obtained (R-2=0.43). The model relating fire extent with moisture-temperature preconditions was improved by including information on land cover, regions, and the month of the fire outbreak (R-2=0.68). Model predictions had an accuracy of 83.3% with a maximum error of 40.5 ha. Results were majorly coherent with wildfires behavior in the Iberian Peninsula and reflected the duality between Euro-Siberian and Mediterranean regions in terms of expected burned area. The proposed model has a promising potential for the enhancement of fire prevention services.Peer ReviewedPostprint (author's final draft

    Origin of defect luminescence in ultraviolet emitting AlGaN diode structures.

    Get PDF
    Light emitting diode structures emitting in the ultraviolet spectral range are investigated. The samples exhibit defect luminescence bands. Synchrotron-based photoluminescence excitation spectroscopy of the complicated multi-layer stacks is employed to assign the origin of the observed defect luminescence to certain layers. In the case of quantum well structures emitting at 320 and 290 nm, the n-type contact AlGaN:Si layer is found to be the origin of defect luminescence bands between 2.65 and 2.8 eV. For 230 nm emitters without such n-type contact layer, the origin of a defect double structure at 2.8 and 3.6 eV can be assigned to the quantum wells. A part of this research was carried out at the light source DORIS III at DESY. DESY is a member of the Helmholtz Association (HGF). We would like to thank A. Kotlov for excellent assistance in using beamline I at DESY. This work was partially supported by the Federal Ministry of Education and Research (BMBF), under Contract No. 13N9933 and Berlin WideBase initiative under Contract No. 03WKBT01D and the German Research Council within the Collaborative Research Center 787.pre-print465 K

    First experimental evidence of wind and swell signatures in L5 GPS and E5A Galileo GNSS-R waveforms

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As compared to the using L1C/A signals, L5/E5a Global Navigation Satellite System - Reflectometry (GNSS-R), gives improved resolution over the Earth's surface due to the sharper auto-correlation function. Furthermore, the larger transmitted power (+3dB with respect to L1 C/A), and correlation gain (+40dB) allows the reception of weaker reflected signals. If high directivity antennas are used, very short incoherent integration times are needed to have enough signal-to-noise (SNR) ratios, allowing the reception of multiple specular reflection points such as crest of consecutive waves without the blurring induced by long incoherent integration times. This study presents for the first time experimental evidence of the wind and swell waves signatures in the GNSS-R waveforms, and compares them with models.Postprint (author's final draft

    Untangling the GNSS-R coherent and incoherent components: Experimental evidences over the ocean

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Global Navigation Satellite Systems Reflected (GNSS-R) signals exhibit an incoherent and a coherent components [1], [2]. Current models assume that one or the other are dominant, and the calibration, and geophysical parameter retrieval (eg. wind speed, soil moisture ...) are developed accordingly. Even the presence itself of the coherent component of a GNSS reflected signal has been a matter of discussion in the last years. In this work, the method used in [3] to separate the leakage of the direct signal from the reflected one is applied to a set of GNSS signals reflected collected over the ocean by the MIR [4], [5], an airborne dual-band (L1/E1 and L5/E5a), multi-constellation (GPS and Galileo) GNSS-R instrument with two 19-elements array with 4 beam-steered each. The results presented demonstrate the feasibility of the proposed technique to untangle the coherent and incoherent components in GNSS reflected signals. This technique allows the processing of these components separately, which will increase the calibration accuracy (as today both are mixed together), and allows high resolution applications since the spatial resolution of the coherent component is determined by the size of the first Fresnel zone [6] (300-500 meters from a LEO satellite), and not by the size of the glistening zone (~25 km from a LEO satellite).This work was supported by the Spanish Ministry of Science, Innovation and Universities, “Sensing with Pio- neering Opportunistic Techniques”, grant RTI2018-099008- B-C21, and the grant for recruitment of early-stage research staff FI-DGR 2015 and 2018 of the AGAUR - Generalitat de Catalunya (FEDER)Postprint (author's final draft

    Vegetation canopy height retrieval using L1 and L5 airborne GNSS-R

    Get PDF
    Vegetation canopy height (CH) is one of the important remote-sensing parameters related to forests’ structure, and it can be related to the biomass and the carbon stock. Global navigation satellite system-reflectometry (GNSS-R) has proved capable to retrieve vegetation information at a moderate resolution from space (20–65 km) using L1 C/A signals. In this study, data retrieved by the airborne microwave interferometric reflectometer (MIR) GNSS-R instrument at L1 and L5 are compared to the Global Forest CH product, with a spatial resolution of 30 m. This work analyzes the waveforms (WFs) measured at both bands, and the correlation of the waveform width and the reflectivity values to the CH product. A neural network algorithm is used for the retrieval, showing that the combination of the reflectivity and the waveform width allows to estimate the CH information at a very high resolution, with a root-mean-square error (RMSE) of 4.25 and 4.07 m at L1 and L5, respectively, which is an error about 14% of the actual CH.Postprint (updated version

    Parameter considerations for the retrieval of surface soil moisture from spaceborne GNSS-R

    Get PDF
    The Microwave Interferometric Reflectometer (MIR) is an airborne GNSS-R instrument developed by Universitat Politècnica de Catalunya. In 2018, it was flown twice over the agricultural Yanco area, New South Wales, Australia, once after a very dry period, and a further time the day after a strong rain event. This rain event resulted in many crop fields being entirely flooded, producing a saturation in the GNSS-R reflectivity value. In this work, the received data set is processed to identify the optimum integration time with the goal to minimize pixel blurring. This issue is assessed for airborne conditions, and then extra-polated to the spaceborne case. The presented results show that the blurring of the GNSS waveform is produced even from an airborne sensor with short integration times. Following the determination of an optimal integration time for the platform in use, the surface roughness term in the reflectivity equation can be isolated due to the signal saturation during very wet surface conditions. The final results from the two channels (L1 C/A and L5) are subsequently presented. In this case, it is shown that most reflectivity variations in GNSS-R measurements are linked to surface roughness and Speckle noise fluctuations rather than soil moisture changes.Postprint (updated version

    Priming effect of glucagon-like peptide-1 (7-36) amide, glucose-dependent insulinotropic polypeptide and cholecystokinin-8 at the isolated perfused rat pancreas

    Full text link
    The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods. 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 [mu]M) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29450/1/0000532.pd

    Improved gnss-r altimetry methods: Theory and experimental demonstration using airborne dual frequency data from the microwave interferometric reflectometer (mir)

    Get PDF
    Altimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R) instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is usually computed from the time difference between the peak of the direct signal waveform and the maximum of the derivative of the reflected signal waveform. Dual-frequency data gathered by the airborne Microwave Interferometric Reflectometer (MIR) in the Bass Strait, between Australia and Tasmania, suggest that this approach is only valid for flat surfaces and large bandwidth receivers. This work analyses different methods to compute the altimetric observables using GNSS-R. A proposed novel methodThis work was funded by the Spanish Ministry of Science, Innovation and Universities, “Sensing with Pioneering Opportunistic Techniques”, grant RTI2018-099008-B-C21/AEI/10.13039/ 501100011033, and the grant for recruitment of early-stage research staff FI-DGR 2015 of the AGAUR— Generalitat de Catalunya (FEDER), Spain, and the grant for recruitment of early-stage research staff FI 2018 of the AGAUR—Generalitat de Catalunya (FEDER), Spain, and Unidad de Excelencia María de Maeztu MDM-2016-060Postprint (published version
    • …
    corecore